Continuing Education Disclosures

Approval Statement: The University of Colorado College of Nursing is an approved provider of continuing education by the Western Multi-State Division, an accredited approver of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

Arizona, Colorado, Idaho, Utah Nurses Associations are members of the Western Multi-State Division of the American Nurses Association.

CME Approval: Community Hospital is an approved category 1 CME provider. This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) and the Council on Osteopathic Continuing Medical Education.

Criteria for successful completion:
- Please sign in and verify contact information and credit choice
- Attendance at 90% of activity required
- Completed evaluation

Conflicts of Interest: No individuals in a position to control content for this activity have any relevant financial relationships to declare.

Commercial Support: There is no commercial support being received for this educational activity.

Joint Provider: This activity is being jointly provided by the University of Colorado College of Nursing, Western Colorado Area Health Education Center (AHEC), HopeWest, and Community Hospital of Grand Junction Office of CME.
This conference has been made possible by the generosity of these Sponsors

- Colorado Mesa University
- Community Hospital
- COPIC
- Delta County Memorial Hospital
- Healthcare Specialties, Inc.
- Home Care of the Grand Valley
- HopeWest
- Juniper Family Medicine
- Montrose Memorial Hospital
- One Point Pharmacy
- Paragon Healthcare
- Phoenix Home Health Care
- Primary Care Partners
- Region X-Area Agency on Aging
- Region XI-Area Agency on Aging
- Rocky Mountain Health Plans
- Senior CommUnity Care PACE
- St. Mary’s Hospital Foundation
- Technical College of the Rockies
- Tri-County Health Network
- Volunteers of America
- WCAHEC
Objectives

• Explain why rotation to a different opioid may improve pain control
• Identify the unique properties of methadone as a second-line pain management opioid
• Explain why combining multiple medications with different mechanisms of pain relief may be needed for complex pain syndromes
Video

- Patients with advanced disease
 Cancer
 Heart Failure
 Etc.
- Attitudes
- Distinguish Acute from Chronic
- Role of Combinations
Debrief

• Attitudes
• Distinguish Acute from Chronic
• Role of Combinations
EQUIANALGESIC DOSING GUIDELINE FOR CHRONIC PAIN

Changing Routes of Administration

<table>
<thead>
<tr>
<th></th>
<th>PO / PR</th>
<th>IV / SC / IM</th>
<th>Epidural</th>
<th>Intrathecal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Changing Analgesics

Opioids

<table>
<thead>
<tr>
<th>Oral / Rectal Dose (mg)</th>
<th>Analgesic</th>
<th>Parenteral SC / IV / IM Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Meperidine</td>
<td>50</td>
</tr>
<tr>
<td>150</td>
<td>Tramadol</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>Codeine</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>Hydrocodone</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Morphine</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Oxycodone</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Oxymorphone</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Hydromorphone</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Levorphanol</td>
<td>1</td>
</tr>
</tbody>
</table>

- Fentanyl 0.050 mg

1000 mcg = 1 mg; must convert to mg to calculate equianalgesic dose

Transdermal Fentanyl

- Morphine 50 mg PO in 24 hrs ≈ Fentanyl 25 mcg, transdermal patch q 72 hrs

Methadone

Daily Morphine Dose (mg/24 hrs PO)

<table>
<thead>
<tr>
<th>Morphine PO</th>
<th>Methadone PO</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>3</td>
</tr>
<tr>
<td>101-300</td>
<td>5</td>
</tr>
<tr>
<td>301-600</td>
<td>10</td>
</tr>
<tr>
<td>601-800</td>
<td>12</td>
</tr>
<tr>
<td>801-1000</td>
<td>15</td>
</tr>
<tr>
<td>>1001</td>
<td>20</td>
</tr>
</tbody>
</table>

Conversion Ratios

- Morphine PO: Methadone PO

Methadone SC Dosing

1. Convert from daily Morphine Equivalent PO Dose / 24 hrs to Methadone PO Dose / 24 hrs using the Methadone PO Dosing Table above
2. Then + 3 to convert to Methadone SC Dose / 24 hrs

Adjusting for Incomplete Cross Tolerance

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>100%</td>
</tr>
<tr>
<td>Moderate</td>
<td>75%</td>
</tr>
<tr>
<td>Excellent</td>
<td>50%</td>
</tr>
</tbody>
</table>

Ferris FD and Pirrello RD: Improving Equianalgesic Dosing for Chronic Pain Management, American Association for Cancer Education Annual Meeting, oral presentation, Cincinnati, Ohio, September 2005

NB: These are guidelines only and do not replace careful clinical judgment specific to each patient / family situation. © International Programs, OhioHealth, 2013. Permission to reproduce material is granted for non-commercial educational purposes only, provided that the attribution statement and copyright are displayed. To reproduce for all other purposes, contact The International Programs at 1-888-278-6615 or visit IPCRC.net.
Case 1

- A 68 yo woman with metastatic breast cancer has continuous pain. You started Morphine 15 mg orally every 4 hours with 15 mg q 1 h prn. She reports pain is well controlled, but she has persistent pruritus.
Opioid Rotation

- Change to an opioid with different chemical structure
 - Resolve adverse effects
 - Improve analgesia
Do the math

• 15 mg q 4h = 6 x 15
 90 mg morphine / 24h

• Look at the equianalgesic table;
 15 mg morphine = 10 mg oxycodone

• Set up a ratio
 15 mg morphine / 10 mg oxycodone
 90 mg morphine / X mg oxycodone

Solve for ‘X’
Question 1

- $X = $

<table>
<thead>
<tr>
<th>90 mg</th>
<th>60 mg</th>
<th>30 mg</th>
</tr>
</thead>
</table>
Question 1

- $X =
 \begin{align*}
 &90 \text{ mg} \\
 &60 \text{ mg} \\
 &30 \text{ mg}
 \end{align*}$
Equianalgesic Conversions

- Check your math with a friend
- Call pharmacy to help you
- Online calculators
Equianalgesic Conversions

- Correct for incomplete cross-tolerance
- If pain well controlled, decrease by 25-50%
- If pain no well controlled, may not need to decrease
Case 2

- 62 yo man with advanced NSCLCa right upper lobe. Now, forearm has intermittent stabbing pain. His elbow ‘aches’ severely. His hand has severe burning. Rates pain 8 / 10 despite 900 tid of gabapentin and 200 mg bid SR Morphine.
- Increased apical mass ➔ plexopathy
- Mixed nociceptive & neuropathic pain
Opioids

• Nociceptive pain > neuropathic pain
 First-line for moderate to severe neuropathic pain
 Titrate to effect or intolerable side-effects
 Poor response, more likely neuropathic pain
Excitatory Amino Acid
NMDA-Glutamate Receptors

- ↑ glutamate & glycine
 - ➔ Change charge
 - ➔ Mg\(^{2+}\) released
 - ➔ channel opens
 - ➔ ↓ opioid responsiveness
 - ➔ allodynia
 - ➔ hyperalgesia
Methadone

• Racemic mixture
 Mu-agonist opioid +
 NMDA receptor antagonist

• Single opioid
 Titrate to effect or intolerable side-effects
 Long half-life; NOT first order kinetics
 Experienced palliative care, pain experts

• Coanalgesic 2.5 – 5+ mg q8h

• Cost PO << parenteral

Fast Facts, see www.eperc.mcw.edu/ff_index.htm
Methadone

• Could also convert to methadone as only long-acting opioid
• Would still need short acting opioid like morphine, NOT methadone, for breakthrough.
CHANGING ROUTES OF ADMINISTRATION

<table>
<thead>
<tr>
<th></th>
<th>PO/PR</th>
<th>IV/SC/IM</th>
<th>Epidural</th>
<th>Intrathecal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

CHANGING ANALGESICS

<table>
<thead>
<tr>
<th>OPIOIDS</th>
<th>Oral/Rectal Dose (mg)</th>
<th>Analgesic</th>
<th>Parenteral SC/IV/IM Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Meperidine</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Tramadol</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Codeine</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hydrocodone</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Morphine</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oxycodone</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Oxymorphone</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hydromorphone</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Levorphanol</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Fentanyl</td>
<td>0.050 mg*</td>
<td></td>
</tr>
</tbody>
</table>

*1000 mcg = 1 mg; must convert to mg to calculate equianalgesic dose

METHADONE

<table>
<thead>
<tr>
<th>Daily Morphine Dose (mg/24 hrs PO)</th>
<th>Conversion Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Morphine PO</td>
</tr>
<tr>
<td><100</td>
<td>3 : 1</td>
</tr>
<tr>
<td>101-300</td>
<td>5 : 1</td>
</tr>
<tr>
<td>301-600</td>
<td>10 : 1</td>
</tr>
<tr>
<td>601-800</td>
<td>12 : 1</td>
</tr>
<tr>
<td>801-1000</td>
<td>15 : 1</td>
</tr>
<tr>
<td>>1001</td>
<td>20 : 1</td>
</tr>
</tbody>
</table>

METHADONE SC DOSING

1. Convert from daily Morphine Equivalent PO Dose/24 hrs to Methadone PO Dose/24 hrs using the Methadone PO Dosing Table above
2. Then + 3 to convert to Methadone SC Dose/24 hrs

ADJUSTING FOR INCOMPLETE CROSS TOLERANCE

<table>
<thead>
<tr>
<th></th>
<th>Poor</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Excellent</td>
<td>50%</td>
</tr>
</tbody>
</table>

Ferris FD and Pirrello RD: Improving Equianalgesic Dosing for Chronic Pain Management, American Association for Cancer Education Annual Meeting, oral presentation, Cincinnati, Ohio, September 2005

NB: These are guidelines only and do not replace careful clinical judgment specific to each patient / family situation. © International Programs, OhioHealth, 2013. Permission to reproduce material is granted for non-commercial educational purposes only, provided that the attribution statement and copyright are displayed. To reproduce for all other purposes, contact The International Programs at 1-888-278-6615 or visit IPCRC.net.
Calculation

- 300 mg morphine SR bid =
 600 mg morphine / 24 hours

- Go to table for 600 mg morphine
 10 morphine = 1 morphine

Do the calculation
Methadone Calculation

\[
\frac{\text{Morphine} \ 600 \ \text{mg}}{\text{Methadone} \ X \ \text{mg}} = \frac{10}{1}
\]

- Solve for \(X \)
Question 2

• $X =$

<table>
<thead>
<tr>
<th>600 mg methadone</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mg methadone</td>
</tr>
<tr>
<td>6000 mg methadone</td>
</tr>
</tbody>
</table>
Question 2

- $X = \begin{array}{l}
600 \text{ mg methadone} \\
60 \text{ mg methadone} \\
6000 \text{ mg methadone}
\end{array}$
Convert over 3 days

- **Day 1: 1/3**
 - 10 mg methadone bid
 - 200 mg morphine SR bid
- **Day 2: 1/3**
 - 20 mg methadone bid
 - 100 mg morphine SR bid
- **Day 3: 1/3**
 - 30 mg methadone bid
 - Stop morphine
If methadone a co-analgesic

- Methadone 5 mg tid
- Continue morphine SR 300 mg bid
- If great analgesia, can titrate down on the morphine
Bone Pain...
Pathophysiology

• Direct stimulation of nociceptors
 Pressure from expanding mass in closed space

• Prostaglandin synthesis
 Chemical stimulation of nociceptors
 Inflammation ➔ edema ➔ pressure
Management

- Opioids
- Acetaminophen
- NSAIDs
- Dexamethasone
- Bisphosphonates
- Radiation
- Immobilization
Question 3

• When starting ibuprofen, an NSAID, for bone pain, start with

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mg qid</td>
<td></td>
</tr>
<tr>
<td>400 mg qid</td>
<td></td>
</tr>
<tr>
<td>600 mg qid</td>
<td></td>
</tr>
<tr>
<td>800 mg tid</td>
<td></td>
</tr>
</tbody>
</table>
Question 3

• When starting ibuprofen, an NSAID, for bone pain, start with
 Green Card 200 mg qid
 Pink Card 400 mg qid
 Yellow Card 600 mg qid CORRECT
 Orange Card 800 mg tid CORRECT
Question 3

• When starting ibuprofen, an NSAID, for bone pain, start with
 - 200 mg qid
 - 400 mg qid
 - 600 mg qid
 - 800 mg tid
Neuropathic Pain...
Neuropathic Pain: Pain arising as a direct consequence of a lesion or disease affecting the somatosensory system = disease =/= symptom
Patient Experience
(some – all – none)

Described as
- Burning
- Shooting
- Electrical
- Freezing
- Aching

Stocking-glove
Radiation

Associated
- Numbness, tingling
- Weakness, clumsiness
- Loss of reflexes
- Autonomic dysfunction

 Swelling, sweating, skin changes
Causes

- Chemotherapy
- Compression – disc, metastases
- Infection – HIV, herpes
- Infiltration – cancer
- Ischemia – compromised arterial or venous circulation, edema, pressure
- Metabolic injury – diabetes
- Transection – amputation
Chemotherapy-induced Peripheral Neuropathy

- Affect neuronal cell body, axonal transport system, myelin sheath, glial support structures

Pure Sensory

- Platins
 - Cisplatin
 - Oxaliplatin
 - Carboplatin

Mixed Sensorimotor

- Taxanes
 - Paclitaxel
 - Docetaxel

- Vinca-alkaloids
 - Vincristine

Management...
...Gabapentinoids

- **Pregabalin vs. gabapentin**
 - Easier to titrate
 - Faster onset
 - ↑ sleep, ↓ anxiety

- **Cost pregabalin >> gabapentin**

- **Trial gabapentin**
 - Start 100 – 300 mg qhs
 - Daily, increase 100 mg q8h
 - Effective 900 – 1800 mg / 24 hr
 - Max 3600 – 5400 mg / 24 hr

- **If ineffective, pregabalin**
 - Start 25 – 75 mg q12h
 - Increase 25 mg q12h
 - Effective 100 – 150 mg / 24 hr
 - Max 300 – 600 mg / 24 hr
Evidence…

- Therapies extrapolated from non-cancer pain
 - Diabetic peripheral neuropathy (DPN)
 - Post-herpetic neuralgia (PHN)
- Few RCTs
- Very few comparative trials
- Trial and error
Gabapentinoids...

- Act on voltage-gated Ca2+ channel, modulating alpha-2-delta protein
 - Positive RCT’s
 - Gabapentin: PHN, DPN, neuropathic cancer pain
 - Pregabalin: PHN, DPN, fibromyalgia
 - NNT less favorable than TCAs
- First-line 2o safety
- Not hepatically metabolized
- No drug interactions
- Side effects usually tolerable

Antidepressants as Analgesics

Efficacy Noradrenaline (N) & Serotonin (S)

3º amine TCAs, amitriptyline (N & S RI)

≈ 2º amine TCAs, desipramine, nortriptyline (N RI)

> Mixed SNRIs, duloxetine, venlafaxine

> SSRIs, citalopram, paroxetine

Antidepressants as Analgesics

Efficacy Noradrenaline (N) & Serotonin (S)

3º amine TCAs, amitriptyline (N & S RI)

≈ 2º amine TCAs, desipramine, nortriptyline (N RI)

> Mixed SNRIs, duloxetine, venlafaxine

> SSRIs, citalopram, paroxetine

Side effects

Greatest = CNS, anticholinergic, nausea, CV

> Less

> Least = sexual

≈ Least = sexual

Antidepressants as Analgesics

Efficacy Noradrenaline (N) & Serotonin (S)
3° amine TCAs, amitriptyline (N & S RI)
≈ 2° amine TCAs, desipramine, nortriptyline (N RI)
> Mixed SNRIs, duloxetine, venlafaxine
> SSRIs, citalopram, paroxetine

Side effects
Greatest = CNS, anticholinergic nausea, CV
> Less
> Least = sexual
≈ Least = sexual

Antidepressants

- Desipramine 10 – 25 mg PO qhs
 Increase by 10 – 25 mg qhs every 3 – 5 days
 (t ½ up to 24 hrs)
- If dose > 100 mg qhs could be effect, assess blood levels for risk of toxicity
Anticonvulsants

- ↓ excitation (↓ Na⁺ / K⁺ flux)
- Limited data, trial-and-error
- Newer drugs have better safety profiles
 - Lamotrigine
 - Carbamazepine (PHN)
 - Topiramate
 - Phenytoin
 - Oxcarbazepine
 - Valproate
 - Tiagabine
 - Levetiracetam
 - Zonisamide
Anticonvulsants

- Carbamazepine 50 – 100 mg q12h
 Increase by 50 – 100 mg every 3 days
 $t_{\frac{1}{2}} = 12$ hrs

Monitor blood levels for risk of toxicity
Opioids, Positive Trials

<table>
<thead>
<tr>
<th>Opioid</th>
<th>Pain Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>PHN</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>DPN & PHN</td>
</tr>
<tr>
<td>Methadone</td>
<td>Mixed neuropathic pain</td>
</tr>
<tr>
<td>Levorphanol</td>
<td>Peripheral & central neuropathic pain</td>
</tr>
</tbody>
</table>

Morphine + gabapentin vs. morphine alone vs. gabapentin DPN or PHN

Systematic review of tramadol (5 trials)

Tough Cases

Like in Diabetes, or Hypertension, sometimes need combinations of medications with different mechanisms of action, e.g.,

- Opioid
- Gabapentin
- Desipramine
- Ibuprofen
Multiple Issues ➔
“Total Pain”

- Disease management
- Loss, grief
- End of life / death management
- Physical
- Psychological
- Social
- Practical
- Spiritual
Video
Discuss

• What is major barrier to managing the pain of advanced illness in your setting?
 Drugs?
 Attitudes?
 Team work?
Key Message

Bone, abdominal and neuropathic pain are frequently devastating and require a complex interdisciplinary approach to management.
Gandhi... *You need to be the change you want to see in the world*...
Palliative Care
Interdisciplinary Curriculum

A Joint Initiative of the
Palliative Medicine Faculty & Staff of

OhioHealth

The Ohio State University
Wexner Medical Center

Nationwide Children’s

We gratefully acknowledge the support of

Award Number R25CA134309 from the National Cancer Institute

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.
Acknowledgements

The principals of the Palliative Care Interdisciplinary Curriculum gratefully acknowledge the support of

Award Number R25CA134309 from the National Cancer Institute

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Acknowledgment and appreciation are extended to faculty and staff of OhioHealth, the Ohio State University Wexner Medical Center, Nationwide Children’s Hospital, the OhioHealth Research Institute, the Institute for Palliative Medicine at San Diego Hospice and the consultants who provided the inspiration and assisted in the development of this curriculum.
Attribution & Permission to Use

Attribution: Adapted from Ferris FD, Bone, Abdominal, Neuropathic Pain. ISBN: 978-1-945872-89-1.

Permission to use, reproduce or adapt any presentations and other content within the Palliative Care Interdisciplinary Curriculum (PCIC) is granted for non-commercial educational purposes only, provided that the above attribution statement and copyright are displayed.

Commercial entities presenting not-for-profit educational programs based on the PCIC Curriculum must not use the PCIC materials with products, images or logos from the commercial entity.

Commercial entities presenting for-profit educational programs using any part of the PCIC Curriculum, must only do so with written permission from Drs. Frank D. Ferris, Jillian Gustin or Lisa Humphrey, Principals, PCIC.
Contact the PCIC Principals...

Frank D. Ferris, MD
Executive Director, Palliative Medicine, Research & Education
Kobacker House, OhioHealth
800 McConnell Dr
Columbus, OH, USA 43214-3463
Phone: +1 (614) 533-6299
Fax: +1 (614) 533-6200
Frank.Ferris@OhioHealth.com

Jillian Gustin, MD
Fellowship Program Director, Hospice and Palliative Medicine Fellowship
Division of Palliative Medicine
Ohio State University Medical Center
5th Floor McCampbell Hall
1581 Dodd Dr
Columbus, OH, USA 43210
Phone: +1 (614) 293-2957
Fax: +1 (614) 688-3700
Jillian.Gustin@osumc.edu
Contact the PCIC Principals

Lisa Humphrey, MD
Director, Hospice and Palliative Medicine
Nationwide Children’s Hospital
700 Children’s Drive, A1061
Columbus, OH 43205
Phone: +1 (614) 722-5139
Fax: +1 (614) 355-2878
Lisa.Humphrey@NationwideChildrens.org